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Abstract

Transverse mode coupling instability is one of the major limitations
of a single bunch current in storage rings. Up to now it appeared in
large electron-positron machines, while its presence in proton colliders
is under question.

This paper is devoted to a theoretical analysis of the effect of lon-
gitudinal variation of the betatron tune (induced by RF quad) on
transverse mode coupling instability threshold. It is shown, that it is
possible to significantly enhance the threshold, introducing the differ-
ence of betatron tunes for the head and the tail of a bunch (due to
RF quad) comparable with the synchrotron tune.

1 Introduction

Recently [1] it was discovered by simulations, that incoherent tuneshift can
increase the threshold current for a wall impedance. Probably the reason
of this is in dependence of betatron tune on longitudinal coordinate. Here
we briefly present calculations for the transverse mode coupling instability
(TMCI) threshold; one can find general details and features of this instability
in [2, 3].

For the purpose of this article one transverse and longitudinal degrees of
freedom are considered. The definitions of Wake-functions correspond to [3];
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all the results are obtained in general form for distributed impedances. After
that, particular case of constant Wake-function 1 was investigated.

The action of RF quad is expressed in dependence of the betatron tune
on longitudinal coordinate:

νb = ν0 + s · g; (1)

where ν0 is the initial betatron frequency, s is the longitudinal coordinate of a
particle from the center of the bunch, g is the gradient of betatron frequency
proportional to the strength of RF quadrupole 2.

It will be shown further, that for such gradients g, which produce the
difference of the betatron frequencies for head and tail particles comparable
with synchrotron tune, the TMCI threshold enchances in factor of 2 and it
grows with an increasing the gradient g.

The physical reason for such a behavior of this instability versus the
longitudinal gradient of betatron tunes is as follows: during a half of syn-
chrotron oscillation forward particles produce the changing of betatron phase
and amplitude of backward ones; when the change of betatron phase over the
synchrotron period is of the order of unity, this instability occurs. The beta-
tron frequencies are usually the same for the head and the tail of a bunch, so
the particles are always in resonance. When the longitudinal gradient of the
betatron frequencies exists, the particles have different betatron frequencies.
The higher is this gradient, the smaller is the changing of the betatron phase
due to their interaction through Wake, because the particles become far from
resonance. It is evident, that the effect must increase with increasing of the
gradient g. In the next section the simple model of a ”hollow beam” will be
presented; then all the calculations will be carried out for a general case.

2 ”Hollow-beam” model

It’s usually convenient to study some simple model in order to understand
general properties of eigenvalues and their dependence on parameters. At
first we use model of the bunch, which consists of particles with one syn-
chrotron amplitude. Let A and ψ be the amplitude and slow phase of beta-
tron oscillations of the test particle. The averaged equation for them reads

1it corresponds, for example, to the Wake-function of a strip line
2the wavelength of RF oscillations is assumed to be much larger, than the bunch length
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(the chromaticity and the longitudinal gradient of betatron frequencies are
equal to zero):

dAeiψ

dτ
=

ωbβ3/2

iγmc2

∫ T

0
Fe−iωbτ

dτ

T
= F, (2)

where the integration time T must be larger than the betatron oscillation
period; ωb, β are the betatron frequency and β-function, ωbdτ = dz/β and
the force F is:

F =
e2

L

∫ ∞
s

W (∆s)D(∆s)ρ(∆s)ds,

where ∆s is the distance between the forward and the test particle, W is
the Wake-function of a vacuum chamber, D and ρ are the average transverse
dipole moment and density of the forward particles, L is the circumference
of the machine.

After averaging with using relation ωbdτ = dz/β the equation for hollow
beam (for zero longitudinal gradient of the betatron frequency) reads:

dAeiψ

dτ
=

Ne2β

i4πγmc2T0

∫ |φ|
−|φ|

W (∆s)D(φ′)dφ′, (3)

where β-function is supposed to be constant for simplicity, φ is the syn-
chrotron phase 3, N is the number of particles,∆s = acos(φ) − acos(φ′), T0

is the revolution frequency and D = D√
β

is the average normalized dipole

moment D = Aeiψ.
For nonzero longitudinal gradient of betatron frequencies the phase ψ

consists of two parts (see 1):

ψ = Ψ + g ·
∫ τ

sdτ = Ψ +
g · λE0

U
δ,

where τ is time, Ψ is the slow part of the betatron phase, λ and U is the
wavelength and amplitude of the RF system, E0 is the energy of particles,
δ = ∆E/E0. It is convenient to use a new variable AeiΨ because of the fact,
that A and Ψ here are influenced only by a collective force. One can easily
obtain the equation for this variable:

dAeiΨ

dτ
= e−i

g·λE0
U

δ Ne2β

i4πγmc2T0

∫ |φ|
−|φ|

W (∆s)D(φ′)dφ′. (4)

3the module φ in this formulas was written due to the symmetry of the collective force
on the synchrotron phase
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Taking into account, that D = AeiΨ+i
g·λE0
U

δ, and after rewriting the total
derivative on time via partial derivatives on time and synchrotron phase,
previous equation converts into:

∂d

∂τ
+

∂d

∂φ
=

Ne2β

i4πγmc2T0

e−iP sin(φ)
∫ |φ|
−|φ|

W (∆s)d(φ′)eiP sin(φ′)dφ′, (5)

where d = AeiΨ and parameter P = g·λE0

U
ae is just a half of differences

of betatron phases due to RF quadrupole for this particular synchrotron
amplitude.

Then for finding eigenfrequencies it is convenient to present d in the form
of infinite sum of harmonics of synchrotron frequency multiplied by exponent
function of time :

d = eiατ
+∞∑

n=−∞
dne

−inφ,

where α is some eigenfrequency. After putting it in the previous equation,
multiplying it by einφ, integrating equation over synchrotron phase from −π
to π and rearranging the terms, one can obtain:

dn(α− nωs) = −K
+∞∑

m=−∞
dmKnm, (6)

where ωs is the synchrotron frequency, K = Ne2β
2π2γmc2T0

and

Knm =
∫ π
0 cos(nφ − P sin(φ))dφ

∫ φ
0 W (∆s)cos(mφ′ − P sin(φ′))dφ′.

Usually, the sum is truncated to a finite number of lower modes. In the
case of only two lower modes n = 0,−1 the matrix for finding eigenfrequencies
is:

α + K00 ·K K01 ·K
K10 ·K α + ωs + K−1−1 ·K. (7)

Putting the determinant of this matrix equal to zero, one can obtain an equa-
tion for α. For zero P K01 = −K10 and an imaginary part of eigenfrequencies
appears for some threshold current (see, for example, [2]). It’s evident, that
when K01, K10 have the same sign, this quadratic equation never gives imagi-
nary solutions, so the TMCI instability in this model disappears. Fig 1 shows
K01, K10 versus parameter P for constant Wake W = 1. For P ' 0.77 the
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Figure 1: The coefficients K01 (upper) and K10 (lower) versus the parameter
P .

coupling terms become of the same sign and TMCI disappears for such a
simple model. For another sign of P the figure of K01, K10 versus P can be
obtained by reflection of Fig. 1 over the zero x axis, so the threshold depends
on the modulus P 4.

3 General investigation

The equation for gaussian distribution in synchrotron phase space can be
obtained in the same manner:

∂d(a, φ)

∂τ
+

∂d(a, φ)

∂φ
=

Ne2β

i4πγmc2T0σ2
e−iPa/σ·sin(φ)

∫ ∞
0

a′da′ exp(−(a′)2/2σ2)
∫ F (a,a′,|φ|)

−F (a,a′,|φ|)
W (∆s)d(a′, φ′)eiPa

′/σ·sin(φ′)dφ′, (8)

where a is the synchrotron amplitude, σ is the longitudinal R.M.S. size, P
is the half of the maximum betatron phase difference for particles with the

4the same is valid for all the next results also
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positive and negative energy offsets for a = σ, ∆s = acos(φ)− a′cos(φ′) and
F (a, a′, φ) is determined by:

F (a, a′, φ) = acos(a/a′cos(φ)), if |a/a′cos(φ)| < 1;

F (a, a′, φ) = π · sign(cos(φ)), otherwise.

For practical calculations of the eigenvalues of this problem, the bunch is
divided into rings with the fixed amplitudes in the synchrotron phase space.
So the dimension of this system increases in factor equal to the number of the
rings in comparison with the ”hollow beam” model. The coupling coefficient
of some mode with azimuthal number n and amplitude a with some mode
with azimuthal number m and amplitude b is:

Knmab = R
∫ π

0
cos(nφ − P sin(φ)a/σ)dφ

∫ F (a,b,φ)

0
W (∆s)cos(mφ′ − P sin(φ′)b/σ)dφ′,

where R = Ne2βb exp(−b2/2σ2)
2π2γmc2T0σ2 .

The linear equation for eigenmodes is:

dn(ai)(α− nωs) = −
∑
j

+∞∑
m=−∞

dm(aj)Knmaibj , (9)

where α is the eigenfrequency, i, j mean the indices of the rings in synchrotron
phase space. The smaller are the rings, the closer to their actual values are
the eigenvalues. They can be found from the equation, which can be obtained
after putting the determinant the above matrix equal to zero.

Further, the results of eigenvalues calculation are shown. The bunch is
divided into 5 radial rings and each ring is presented by 5 azimuthal modes,
so it is possible to see the behavior of the first 25 modes, which gives usually
few percent deviation for the threshold from its actual value.

In Fig.(2) one can see the eigentunes for the constant Wake-function W

versus parameter X = Ne2βW
2π2γmc2T0

, which is proportional to the number of par-
ticles per bunch. In this figure the betatron tune is shifted into zero . The
synchrotron tune here is equal to unity and parameter P is equal to zero. All
the real parts of frequencies start from a zero current; the imaginary parts

6



0.0 1.0 2.0
−3.0

−2.0

−1.0

0.0

1.0

2.0

3.0

Figure 2: The eigenfrequencies of transverse oscillations versus parameter
X = Ne2βW

2π2γmc2T0
. The parameter P = 0
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Figure 3: The eigenfrequencies of transverse oscillations versus parameter
X = Ne2βW

2π2γmc2T0
. The parameter P = 2.
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Figure 4: The eigenfrequencies of transverse oscillations versus parameter
X = Ne2βW

2π2γmc2T0
. The parameter P = 5.

appear near the zero axis after merging of some modes. Near betatron tune
there is a bunch of the ”radial” eigentunes with zero ”azimuthal” number. If
briefly, all these modes for small current have zero oscillations of dipole mo-
ment over an angle in synchrotron phase space, and they differ in dependence
of the dipole moment on the synchrotron amplitude (”radius” in synchrotron
phase space). For each integer number there are higher ”azimuthal” modes,
whose tunes differ from betatron tune in this particular integer number of
synchrotron tunes for small current. This number means the number of mod-
ulation of eigenmodes over the angle in synchrotron phase space. As in the
case of ”zero” azimuthal modes, there are a lot of ”radial” modes for every
azimuthal number. The first merging of some ”zero” radial mode and some
”-1” radial mode occurs for X = .12. The next merging occurs for 5 times
larger current (”-1” radial and ”+1” radial modes). In both cases a pair of
the modes with equal real parts of the tune and with opposite imaginary
parts of the tune appears; this, evidently, means instability of the bunch.

Figures 3,4 show the eigenvalues for P = 2 and P = 5 consequently.
Finally the factor of increasing the TMCI threshold is shown in Fig. 5. One
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Figure 5: The factor of increasing the TMCI threshold versus parameter P

can see, that the RF quad easily can shift the threshold in factor five and
more.

4 Conclusion

It is shown, that the longitudinal gradient of betatron frequency can effec-
tively increase the TMCI threshold. The similar ideas of using the shift of
transverse frequency along the bunch was earlier proposed for linacs [5].

Rough estimations for the VLHC [4] can be made for the length of such
a quadrupole. Let’s take the maximum electric field equal to 50 MV/m,
aperture and wavelength of RF equal to 10 cm (the designed bunch length is
approximately the same), beta-function equal to 600 meters, the synchrotron
tune equal to .01 and the injection energy is 3 TeV. The result of the cal-
culations is, that one needs 1.25 meters of quadrupole to produce betatron
tuneshift of about one synchrotron tune for particles with 1 R.M.S. longitu-
dinal offset. Probably it is possible to combine RF quadrupole with the basic
RF system. In this case the same RF generators can be used. So it looks like
this method of increasing the TMCI threshold may be simple and reliable.
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